Access COM Clients
From .NET Objects

Access COM clients from .NET components, program against the thread pool, and use
the system’s File Properties dialog.

Technology Toolbox

 VB.NET

o C#

(1 SQL Server 2000
1 ASP.NET

a XML

o VB6

™ Note: Karl E. Peterson’s solution
also works with VB5.

Go Online!

Use these Locator+ codes at
www.visualstudiomagazine.com
to go directly to these related
resources.

Download

VS02120QA Download the code for
this article, including the
ThreadPool project, which allows
the user to queue requests for the
thread pool; and a drop-in—ready
module containing code that brings
up any file's Properties dialog.
Discuss

VS0212QA_D Discuss this article in
the .NET forum.

Read More
VS02120QA_T Read this article
online.

VSEP011204RH_T “Boost Web
Power With ASP.NET” by Rob
Howard

VS0209BB_T Black Belt, “Sync
Threads Automatically,” by Juval
Lowy

VS0205RT_T “Invoke Asynchronous
Magic” by Robert Teixeira

48

e Use .NET Components
With COM Clients

Does .NET use COM apartments? If not, why

do T see the single-threaded apartment (STA)

attribute on new Windows Forms applications?

A:

NET does not have an equivalent to COM’s
apartments. Unlike COM, every .NET compo-
nent resides in a free-threaded environment, and
it’s up to you to provide proper synchronization
(see Figure 1). The question is, what threading
modelshould .NET components presentto COM
when interoperating with COM components as
aclient? COM needs to take the client’s threading
model into account when deciding on the exact
apartmentof the COM server object. The Thread
class has a property called ApartmentState of the
enum type ApartmentState:

public enum ApartmentState
{

STA,

MTA,

Unknown

By default, the Thread class’s ApartmentState
property is set to ApartmentState.Unknown.
You can instruct NET programmatically which
apartment to present to COM. Simply set the
value of the thread’s ApartmentState property to
either ApartmentState.STA or Apartment-
State. MTA (but not to ApartmentState.-
Unknown):

Thread currentThread;
currentThread = Thread.CurrentThread;

VISUAL STUDIO MAGAZINE

by Juval Lowy and Karl E. Peterson

currentThread.ApartmentState =
ApartmentState.STA;

You can even set the threading model before the
thread starts to run:

//Some thread method
void ThreadMethod(){...}

ThreadStart threadStart;
threadStart = new
ThreadStart(ThreadMethod) ;
Thread workerThread = new
Thread(threadStart);
currentThread.ApartmentState =
ApartmentState.STA;
workerThread.Start();

You can also use either the STAThread or the
MTAThread method attributes to set the apart-
ment state declaratively. Although the compiler
doesn’t enforce that, you should only apply
these attributes to the Main() method:

[STAThread]
static void Main()
L)

Use programmatic settings for your worker
threads. The Windows Forms application wiz-
ard applies the [STAThread] attribute auto-
matically to the Main() method of a Windows
Formsapplication. Thisin done for two reasons.
First, you need the attribute applied in the event
of the application hosting ActiveX controls,
which are STA objects by definition. Second,
you need the attribute applied for when the
Windows Forms application interacts with the

DECEMBER 2002 www.visualstudiomagazine.com

Proxy

Apartment

Interop |

' Runtime ¢

callable Client

|
i

Figure 1 Masquerade COM Apartments. COM objects require apartments to manage concurrency and activation. However, .NET has no
use for them. The interop layer converts a managed call to a COM call, and in the process, conveys a synthetic apartment model to COM that

you can set, just as if your .NET client were a COM client.

clipboard, which still uses COM interop.

When you apply the [STAThread] attribute, the underlying
physical thread uses Olelnitialize() instead of ColnitializeEx() to set
up the apartment model. Olelnitialize() automatically does addi-
tional initialization required for enabling drag-and-drop.

You'll experience one side effect when you select an apartment-
threading model: You cannot call WaitHandle. WaitAll() from a
thread whose apartment state is set to ApartmentState.STA. If you
do, .NET throws an exception of type NotSupportedException.
The underlying implementation of WaitHandle. WaitAll() uses the
Win32 call WaitForMultipleObjects(), and that call blocks the STA
thread from pumping COM calls in the form of messages to the
COM objects. —/.L.

¢ Use the System’s File
Properties Dialog
My application offers a display of filenames as part of its user
interface. I'd like to give users the ability to bring up the system File
Properties dialog as one of the options when they right-click on a
filename. How can I do that?

A:

This task involves only a single quick call to the ShellExecuteEx API
(see Listing 1). Unlike ShellExecute, ShellExecuteEx enables you to
call any context menu item related to a given shell object—
“properties,” in this case.

Set up the call by creatinga SHELLEXECUTEINFO structure
and filling its first element (cbSize) with the structure’s overall size
so the system knows that you know what you’re doing. Create the
flag mask by combining the constant values for SEE_MASK_
INVOKEIDLIST (which allows the use of shortcut menu exten-
sion verbs, rather than only Registry verbs), SEE_MASK_
FLAG_NO_UI (which prevents the system from popping message
boxes on errors), and SEE_MASK_DOENVSUBST (which ex-
pands environment variables in the passed filespec).

It’s good form to stuff the structure’s hWnd element with the
handle of a window in your app. This window serves as the parent
of any error-related message boxes the system pops up, although
you’ve instructed the system already not to do this. The IpVerb
element is the key to bringing up the desired dialog—assign

VISUAL STUDIO MAGAZINE - DECEMBER 2002 -«

www.visualstudiomagazine.com

“properties” to this element. Finally, assign the desired filename to
the IpFile element, and make the call to ShellExecuteEx.

You can' gauge your call’s success by examining the SHELL-
EXECUTEINFO structure’s hInstApp element for a value greater
than 32. Values less than 32 indicate an error occurred, and you can
interpret the exact cause from the specific value. —K.E.P.

Q: Program Against the Thread Pool

I read that NET uses a thread pool under the hood for tasks such
as asynchronous method calls. Is there a way [can program against
that pool directly? This will save me the trouble of managing my
own threads.

A:

You can program directly against the thread pool. Creating worker
threads and managing their lifecycle gives you ultimate control over
these threads. Italso increases your application’s overall complexity.
Ifyou only need to dispatch a unit of work to a worker thread, then
you can take advantage of a. NET-provided thread from the thread
pool instead of creating a thread. NET manages the thread pool,
and the pool has a set of threads ready to serve application requests.
NET makes extensive use of the thread pool itself, not only for
asynchronous calls, but also for timers and remote calls. You access
the NET thread pool through the ThreadPool class’s static meth-
ods. Using the thread pool is simple. First, create a delegate of type
WaitCallback, targeting a method with a matching signature:

public delegate void WaitCallback
(object state);

Then, provide the delegate to one of the ThreadPool class’ static
methods—typically, QueueUserWorkItem():

public sealed class Threading.ThreadPool
{
public static bool
QueueUserWorkItem(WaitCallback
callBack);
/* Other methods */
}

49

QA

£

VB5, VB6 * Show the System File Properties Dialog

Option Explicit

Private Declare Function ShellExecuteEx Lib _
“shell32.dll" Alias "ShellExecutebxA" _
(1pExecInfo As SHELLEXECUTEINFO) As Long

' ShellExecuteEx flags

Private Const SEE_MASK_INVOKEIDLIST = &HC
Private Const SEE_MASK_NOCLOSEPROCESS = &H40
Private Const SEE_MASK_DOENVSUBST = &H200
Private Const SEE_MASK_FLAG_NO_UI &H400

Il

' ShellExecuteEx parameters
Private Type SHELLEXECUTEINFO
cbSize As Long
fMask As Long
hWnd As Long
IpVerb As String
1pFile As String
1pParameters As String
1pDirectory As String
nShow As Long
hInstApp As Long
' Optional fields
1pIDList As Long
1pClass As String

!

1

{

hkeyClass As Long

dwHotKey As Long

hIcon As Long

hProcess As Long
End Type

Public Function ShowFilePropertiesDialog(ByVal _
FileSpec As String, ByVal hWndMsgOwner As _
Long) As Boolean
Dim sei As SHELLEXECUTEINFO

With sei
.cbSize = Len(sei)
.fMask = SEE_MASK_INVOKEIDLIST _
Or SEE_MASK_FLAG_NO_UT _
Or SEE_MASK_DOENVSUBST
.hWnd = hWndMsgOwner
.1pVerb = "properties"
JpEile=metpac
End With
Call ShellExecuteEx(sei)
' An "instance handle" is always greater than
' 32. An error value from this call is always
' less than 32
ShowFilePropertiesDialog =
End Function

(sei.hInstApp > 32)

Listing 1 Enter this code into a standalone BAS module, and you have a drop-in-ready solution for displaying the system File Properties
dialog. Simply pass the ShowFilePropertiesDialog procedure the filename you'd like to have displayed, and the handle for an owner form
should the system decide it needs to display a message box (which is unlikely).

As the method name implies, dispatching a work unit to the thread
pool is subject to pool limitations. This means that if no available
threads exist in the pool, .NET queues the work unit and serves it
onlywhen a worker thread returns to the pool. .NET serves pending
requests in order. Use the thread pool like this:

void ThreadPoolCallback(object state)
{
Thread currentThread =
Thread.CurrentThread;
Debug.Assert(currentThread.
IsThreadPoolThread);
int threadID =
currentThread.GetHashCode();
Trace.WriteLine("Called on thread "
"with ID
threadID.ToString());

M4

WaitCallback callBack = new
WaitCallback(ThreadPoolCallback);
ThreadPool.QueueUserWorkItem(callBack);

For diagnostic purposes, you can find out whether the thread your
code runs on originated from the thread pool using the Thread
class’s IsThreadPoolThread property.

A second overloaded version of QueueUserWorklItem() allows
you to pass in an identifier to the callback method in the form of a
generic object:

public static bool QueueUserWorkItem(
WaitCallback callBack,object state);

50

VISUAL STUDIO MAGAZINE -«

You pass in the identifier as a single parameter to the callback
method. Ifyou don’t provide such a parameter, .NET passes in null.
The identifier enables the same callback method to handle multiple
posted requests, while at the same time being able to distinguish
between them.

The ThreadPool class supports several other useful ways of
queuing a work unit. The RegisterWaitForSingleObject() method
allows you to provide a waitable handle as a parameter. The thread
from the thread pool waits on the handle, and only calls the callback
once the handle is signaled. You can also specify a timeout to wait
for. The GetAvailable Threads() method allows you to find out how
many threads are available in the pool, and the GetMaxThreads()
returns the pool’s maximum size. —/.L.

Juval Léwy is a software architect and principal of IDesign, a
consulting and training company focused on .NET design and migra-
tion. Juval is a Microsoft Regional Director for Silicon Valley, the author
of Programming .NET Components (O'Reilly & Associates), and he
speaks at software development conferences. Contact him at
www.idesign.net.

Karl E. Peterson is a GIS analyst with a regional transportation
planning agency and serves as a member of the VSM Technical
Review and Editorial Advisory Boards. Online, he's a Microsoft MVP
and a section leader on several DevX forums. Find more of Karl's VB
samples at www.mvps.org/vb.

Additional Resources

“HOWTO: Set the COM Apartment Type in Managed Threads":
http://support.microsoft.com/default.aspx?scid=kb;
en-us;q318402&

DECEMBER 2002 - www.visualstudiomagazine.com

